5

# **PG – 144**

Max. Marks: 80

## III Semester M.Sc. Degree Examination, December 2014 (Semester Scheme) (NS) MATHEMATICS M 303 : Differential Geometry

Time: 3 Hours

Instructions: i) Answer any five questions choosing atleast two from each Part.

ii) All questions carry equal marks.

### PART - A

- 1. a) Define : (i) natural coordinate functions (ii) vector field (iii) natural frame field to E<sup>3</sup>. Prove that every vector field is a linear combination of natural frame field.
  - b) Let f and g be functions on  $E^3$ ,  $v_p$  be a tangent vector to  $E^3$ , a and b be real numbers. Then prove that

i) 
$$v_p[af + bg] = a v_p[f] + b v_p[g],$$

ii) 
$$v_p[fg] = v_p[f]g(p) + f(p)v_p[g]$$
.

c) Prove the identity  $V = \sum_{i=1}^{3} V[x_i]U_i$ , where V is a vector field and  $x_1, x_2, x_3$  are natural coordinate functions.

## 2. a) Let $\alpha$ be a curve in E<sup>3</sup> and let f be a differentiable function on E<sup>3</sup>. Then prove that $\alpha^{1}(t)[f] = \frac{d}{dt}(f(\alpha))(t)$ . 5

- b) Evaluate 1-form  $\phi = x^2 dx y^2 dz$  on the vectorfield  $\frac{1}{x}V + \frac{1}{y}W$ , where  $V = xU_1 + yU_2 + zU_3$  and  $W = x^2yU_1 + y^2zU_2 + z^2xU_3$ . 6
- c) Find F<sub>\*</sub> for the mapping F = (x cos y, x sin y, z) and compute F<sub>\*</sub>(v<sub>p</sub>) if v = (2, -1, 3) and p = (0, 0, 0).

6

6

4

### PG – 144

#### 

5

4

6

6

4

4

6

8

- 3. a) Compute the Frenet apparatus k,  $\tau$ , T, N, B of the unit speed curve  $\beta(s) = \left(\frac{4}{5}\cos s, 1 - \sin s, -\frac{3}{5}\cos s\right)$  show that this curve is a circle. Find its centre and radius.
  - b) Prove that a regular curve  $\alpha$  with k > 0 is a cylindrical helix if and only if  $\frac{\tau}{k}$  is constant.
  - c) Let  $V = -yU_1 + xU_3$  and  $W = cosxU_1 + sinxU_2$ . Express  $\nabla(Z^2W)$  in terms of V

4. a) Define connection forms. Let  $w_{ij}$  (1  $\leq$  i, j  $\leq$  3) be the connection forms of a frame field  $E_1$ ,  $E_2$ ,  $E_3$  on  $E^3$ . Then for any vector field V on  $E^3$  prove that

$$\nabla \mathsf{E}_{i} = \sum_{j} w_{ij}(\mathsf{V}) \mathsf{E}_{j} \ (1 \le i \le 3).$$

- b) With usual notations prove that  $d\theta_i = \sum w_{ij} \wedge \theta_j$  (1 ≤ i ≤ 3).
- c) Define a translation on  $E^3$ . If S and T are translations on  $E^3$ , prove that ST = TS is also a translation.

- 5. a) Define : (i) coordinate patch (ii) proper patch. If f is a differentiable real valued function on a non-empty set D of  $E^2$ , then show that  $x : D \to E^3$  defined by x(u, v) = (u, v, f(u, v)) is a proper patch in  $E^3$ .
  - b) Prove that a plane is  $E^3$  is a simple surface.
  - c) Let g be a differentiable real valued function on  $E^3$  and c a number. Then prove that the subset M : g(x, y, z) = c of  $E^3$  is a surface if and only if the differential dg is not zero at any point of M.
- 6. a) Explain parametrization of surface of revolution. Find the parametrization of the surface obtained by revolving C :  $(z-3)^2 + y^2 = 1$  around y axis. 4
  - b) Let  $F : M \to N$  be a mapping of surfaces and let  $\xi$  and  $\eta$  be p-forms (p = 0, 1, 2) on N. If  $F^*$  is the pull back function, then prove that  $F^*(\xi \land \eta) = F^*\xi \land F^*\eta$ . **4**
  - c) Show that a mapping X :  $D \rightarrow E^3$  is regular if and only if the u, v-partial velocities X<sub>u</sub>(d), X<sub>v</sub>(d) are linearly independent for all d  $\in$  D, D  $\subset$  E<sup>2</sup>.

-2-

#### 

-3-

- b) Define a umbilic point. Show that every point on a sphere is umbilic.
- c) Let  $k_1$ ,  $k_2$  and  $e_1$ ,  $e_2$  be the principal curvatures and vectors of M at P, where  $M \subset E^3$ . Then prove that  $k(u) = k_1 \cos^2 \theta + k_2 \sin^2 \theta$ , where  $u(\theta) = \cos \theta e_1 + \sin \theta e_2$ .
- 8. a) With usual notations prove that  $K = \frac{In m^2}{EG F^2}$  and  $H = \frac{GI + En 2Fm}{2(EG F^2)}$ . 6
  - b) Compute K and H and hence  $k_1$ ,  $k_2$  for the surface of helicoid given by X(u, v) = (u cos v, u sin v, bv); b  $\neq 0$ .
  - c) Define a geodesic curve. Prove that a geodesic on a plane is a straight line. 4



5

5

6