III Semester M.Sc. Degree Examination, December 2014
 (Semester Scheme) (NS)
 MATHEMATICS
 M 303 : Differential Geometry

Time : 3 Hours
Max. Marks : 80

Instructions: i) Answer any five questions choosing atleast two from each Part.
 ii) All questions carry equal marks.

PART - A

1. a) Define : (i) natural coordinate functions (ii) vector field (iii) natural frame field to E^{3}. Prove that every vector field is a linear combination of natural frame field.
b) Let f and g be functions on E^{3}, v_{p} be a tangent vector to E^{3}, a and b be real numbers. Then prove that
i) $v_{p}[a f+b g]=a v_{p}[f]+b v_{p}[g]$,
ii) $v_{p}[f g]=v_{p}[f] g(p)+f(p) v_{p}[g]$.
c) Prove the identity $\mathrm{V}=\sum_{\mathrm{i}=1}^{3} \mathrm{~V}\left[\mathrm{x}_{\mathrm{i}}\right] \mathrm{U}_{\mathrm{i}}$, where V is a vector field and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ are natural coordinate functions.
2. a) Let α be a curve in E^{3} and let f be a differentiable function on E^{3}. Then prove that $\alpha^{1}(t)[f]=\frac{d}{d t}(f(\alpha))(t)$.
b) Evaluate 1 -form $\phi=x^{2} d x-y^{2} d z$ on the vectorfield $\frac{1}{x} V+\frac{1}{y} W$, where $V=x U_{1}+y U_{2}+z U_{3}$ and $W=x^{2} y U_{1}+y^{2} z U_{2}+z^{2} x U_{3}$.
c) Find F_{*} for the mapping $F=(x \cos y, x \sin y, z)$ and compute $F_{*}\left(v_{p}\right)$ if $v=(2,-1,3)$ and $p=(0,0,0)$.
3. a) Compute the Frenet apparatus $\mathrm{k}, \tau, \mathrm{T}, \mathrm{N}, \mathrm{B}$ of the unit speed curve $\beta(s)=(4 / 5 \cos s, 1-\sin s,-3 / 5 \cos s)$ show that this curve is a circle. Find its centre and radius.
b) Prove that a regular curve α with $\mathrm{k}>0$ is a cylindrical helix if and only if τ / k is constant.
c) Let $\mathrm{V}=-\mathrm{yU}_{1}+\mathrm{xU} \mathrm{U}_{3}$ and $\mathrm{W}=\cos x \mathrm{U}_{1}+\sin x \mathrm{U}_{2}$. Express $\underset{\mathrm{V}}{\nabla}\left(\mathrm{Z}^{2} \mathrm{~W}\right)$ in terms of $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}$.
4. a) Define connection forms. Let $w_{i j}(1 \leq i, j \leq 3)$ be the connection forms of a frame field E_{1}, E_{2}, E_{3} on E^{3}. Then for any vector field V on E^{3} prove that

$$
\begin{equation*}
\nabla E_{i}=\sum_{j} w_{i j}(V) E_{j}(1 \leq i \leq 3) . \tag{6}
\end{equation*}
$$

b) With usual notations prove that $d \theta_{i}=\sum_{i} w_{i j} \wedge \theta_{j}(1 \leq i \leq 3)$.

6
c) Define a translation on E^{3}. If S and T are translations on E^{3}, prove that $\mathrm{ST}=\mathrm{TS}$ is also a translation.

PART-B
5. a) Define : (i) coordinate patch (ii) proper patch. If f is a differentiable real valued function on a non-empty set D of E^{2}, then show that $x: D \rightarrow E^{3}$ defined by $x(u, v)=(u, v, f(u, v))$ is a proper patch in E^{3}.

6
b) Prove that a plane is E^{3} is a simple surface.
c) Let g be a differentiable real valued function on E^{3} and c a number. Then prove that the subset $M: g(x, y, z)=c$ of E^{3} is a surface if and only if the differential dg is not zero at any point of M.
6. a) Explain parametrization of surface of revolution. Find the parametrization of the surface obtained by revolving $C:(z-3)^{2}+y^{2}=1$ around y - axis.
b) Let $F: M \rightarrow N$ be a mapping of surfaces and let ξ and η be p-forms $(p=0,1$, 2) on N. If F^{*} is the pull back function, then prove that $F^{*}(\xi \wedge \eta)=F^{*} \xi \wedge F^{*} \eta$.
c) Show that a mapping $X: D \rightarrow E^{3}$ is regular if and only if the u, v-partial velocities $X_{u}(d), X_{v}(d)$ are linearly independent for all $d \in D, D \subset E^{2}$.
7. a) Obtain the shape operator of the saddle surface $M: z=x y$.

6
b) Define a umbilic point. Show that every point on a sphere is umbilic.
c) Let k_{1}, k_{2} and e_{1}, e_{2} be the principal curvatures and vectors of M at P, where $M \subset E^{3}$. Then prove that $k(u)=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta$, where $u(\theta)=\cos \theta e_{1}+\sin \theta e_{2}$.
8. a) With usual notations prove that $\mathrm{K}=\frac{\mathrm{In}-\mathrm{m}^{2}}{E G-F^{2}}$ and $\mathrm{H}=\frac{\mathrm{GI}+\mathrm{En}-2 F m}{2\left(E G-F^{2}\right)}$.
b) Compute K and H and hence k_{1}, k_{2} for the surface of helicoid given by $\mathrm{X}(\mathrm{u}, \mathrm{v})$ $=(u \cos v, u \sin v, b v) ; b \neq 0$.
c) Define a geodesic curve. Prove that a geodesic on a plane is a straight line.

